

H18EDD-0402C Ethernet Demarcation Access Device Hardware Description

Beijing Huahuan Electronics Co.,Ltd.

H18EDD-0402C Ethernet Demarcation Access Device

Hardware Description

Beijing Huahuan Electronics Co., Ltd. June.2019

Copyright Notice

The intellectual property rights of all parts of this product, including accessories etc., are owned by Beijing Huahuan Electronics Co., Ltd. (Beijing Huahuan for short). Without prior written consent of Beijing Huahuan, no part of this document may be reproduced or transmitted in any form or by any means. The information in this document, including product specifications and information, is subject to change without notice. For information related, please consult Beijing Huahuan.

Copyright © Beijing Huahuan Electronics Co., Ltd. 2014 All rights reserved

Product Name: H18EDD-0402C Ethernet Demarcation Access Device

Version: 1.0

Release Date: June. 2019

BEIJING HUAHUAN ELECTRONICS Co., LTD.

- Address: No.26, Shangdi 6th Street, Haidian District, Beijing, 100085 P.R. China
- Tel: +86-400-810-8580, +86-10-52046188
- Fax: +86-10-52046288
- Website: www.huahuan.com
- E-mail: support@huahuan.com

Contents

Contents	i
List of Figures	iii
List of Tables	iv
1 Overview	1
2 Architecture and Introduction	2
2.1 Front Panels	2
2.2 Rear Panel	2
2.3 LED	2
2.4 Device Ports	4
2.5 Cable Introduction	7
2.5.1 DB9-RJ45 Serial Port Cable (ZJN.BH4.851.105A)	7
2.5.2 Fiber and Connector (LC/PC)	8
2.5.3 Ethernet Cable	9
2.5.4 AC Power Cable	13
2.5.5 DC Power Cable	16
2.5.6 Protection Ground Cable (ZJN.BH4.851.134)	16
3 Technical Specifications	18
3.1 Monitoring Interface	18
3.2 10/100/1000Base-Tx Interface	18
3.3 100/1000Base-SX/LX Interface	19
3.4 Power Voltage	19
3.5 Power Consumption	19
3.6 Operation Environment	20
3.7 Chassis Size	20

3.8 Device Weight	
Appendix Terms and Abbreviations	

List of Figures

Figure 2-1 The front panel diagram of H18EDD-0402C (AC220V)	2
Figure 2-2 The rear panel diagram of the device	2
Figure 2-3 RJ-45 connector pin number diagram	4
Figure 2-4 Reset button	6
Figure 2-5 DB9-RJ45 serial port cable	7
Figure 2-6 Pin assignments	8
Figure 2-7 LC/PC fiber connector	9
Figure 2-8 Ethernet cable	9
Figure 2-9 Line order of the straight-through cable	11
Figure 2-10 Line order of the 100 Mbit/s crossover cable	11
Figure 2-11 Line order of the 1000 Mbit/s crossover cable	12
Figure 2-12 Chinese standard AC power cable (BH4.855.035-A)	14
Figure 2-13 German standard AC power cable (BH4.855.035-B)	14
Figure 2-14 American standard AC power cable (BH4.855.035-C)	14
Figure 2-15 South Africa AC power cable (BH4.855.035-D)	14
Figure 2-16 Japanese standard AC power cable (BH4.855.035-E)	15
Figure 2-17 British standard AC power cable (BH4.855.035-F)	15
Figure 2-18 North American AC power cable (BH4.855.035-G)	15
Figure 2-19 The grounding cable diagram	16

List of Tables

Table 2-1 The LED functional descriptions of H18EDD-0402C device	3
Table 2-2 RJ-45 socket definition at GE port	4
Table 2-3 Marks and definitions of management ports	5
Table 2-4 RJ-45 socket definition at NM port	6
Table 2-5 RJ45 socket definition of CONSOLE management port	6
Table 2-6 Technical specifications of DB9-RJ45 serial port cable	8
Table 2-7 Line orders of EIA/TIA 568A and EIA/TIA 568B standards	10
Table 2-8 Technical specifications of the Ethernet cable	12
Table 2-9 AC power supply cable list	13
Table 2-10 Technical specifications of AC power cable	15
Table 2-11 Grounding cable structure list	17
Table 2-12 Technical specifications of the grounding cable	17

1 Overview

Thank you for choosing H18EDD-0402C Ethernet Demarcation Access Device from Beijing Huahuan Electronics Co., Ltd. For the best service from this product, please read this manual carefully.

H18EDD-0402C device supports 2 GE optical interfaces, 2 GE electrical interfaces and 2 1000M COMBO interfaces. You can customize the device with 4 optical interfaces+2 electrical interfaces or 2 optical interfaces+4 electrical interfaces.

2 Architecture and Introduction

2.1 Front Panels

2.2 Rear Panel

Figure 2-2 The rear panel diagram of the device

2.3 LED

The LED functional descriptions on the front panel of H18EDD-0402C device are shown in Table 2-1.

Mark	Color	Functional description				
		Device running indication:				
SYS	Green	Blink: running normally				
		Off: running abnormally				
		Device power state indication:				
PWR	Green	On: running normally				
		Off: running abnormally or unconnected				
		NM port Link and Active indication:				
NM	Croon	On: connection has been built at NM port				
Green	Green	Blink: data is transmitted or received at NM port				
		Off: no connection has been built at NM port				
		Ethernet electrical port Link and Active				
Green LED		On: connection has been built at Ethernet port				
at GE electrical	Green	Blink: data is transmitted or received at Ethernet				
port		Off: no connection has been built at Ethernet				
		Ethernet optical port Link and Active indication:				
Green LED at GE optical		On: connection has been built at Ethernet port				
	Green	Blink: data is transmitted or received at Ethernet port				
port		Off: no connection has been built at Ethernet				
		port				

Table 2-1 The LED functional descriptions of H18EDD-0402C device

Mark	Color	Functional description
Red LED at		Ethernet optical port LOS indication:
GE optical	Red	On: no signal input
port		Off: signal inputted

2.4 Device Ports

Ethernet Electrical Port

H18EDD-0402C device provides GE electrical ports in standard RJ-45 form. RJ-45 connector diagram and pin definition are shown in Figure 2-3 and Table 2-2.

Figure 2-3 RJ-45 connector pin number diagram

Table 2-2 RJ-45 socket definition at GE port

Pin	1	2	3	4	5	6	7	8
Definition	BI_A +	BI_A-	BI_B+	BI_C+	BI_C-	BI_B-	BI_D +	BI_D -

Note: BI stands for bidirectional.

Ethernet electrical port of H18EDD-0402C device can automatically detect the transceiver line order of the connected network cable and make adaptions. So the port can be used whether the Ethernet interface is MDI or MDI-X and whether the network cable used is crossover or straight-through.

Ethernet Optical Port

H18EDD-0402C device provides GE optical ports. GE optical ports use LC dual-fiber SFP optical module and single-fiber SFP optical module is also selectable. When using single-fiber

transceiver module, only one optical port exists. The wavelength of single-fiber module is its emission wavelength.

When connector is inserted into optical transceiver module socket, the latching tab should be aligned to the correspondent notch. The bending radius of pigtail fiber should be not less than 50mm. When optical fiber connector is inserted or pulled, do not directly pull the optical fiber. Please reserve the protection plug on SFP optical module. When no optical fiber is connected, please ensure that the protection plug is inserted to prevent dust from entering.

Single-fiber devices with the same emission wavelength cannot interwork. So when single-fiber devices are interworked, the devices with matched emission wavelengths should be used.

COMBO Port

H18EDD-0402C device provides COMBO ports, which supports optical interface 100/1000mbit/s and electrical interface 10/100/1000mbit/s COMBO (photoelectric multiplexing) function.

Management Port

H18EDD-0402C device provides 1 NM port and 1 CONSOLE port as their network management ports, marks and definitions are shown in Table 2-3. Network management ports use standard RJ-45 socket whose connector diagram is shown in Figure 2-3, NM is the FE electrical port; see its socket definition in Table 2-4. CONSOLE port pin definition is shown in Table 2-5.

Mark	Definition
NM	Out-of-band management port, using Telnet/EzView to manage device

Table 2-3 Marks and definitions of management ports

Mark	Definition
CONSOLE	RS232 management port, using hyper terminal to manage device

Table 2-4 RJ-45 socket definition at NM port

Pin	1	2	3	4	5	6	7	8
Definition	TxD+	TxD-	RxD+	_	-	RxD-	-	_

Table 2-5 RJ45 socket definition of CONSOLE management port

Pin	1	2	3	4	5	6	7	8
Definition	-	-	TxD	GND	GND	RxD	-	-

Reset Button

There is a reset button labeled "RST" on the H18EDD-0402C device, which can realize manual reset of the whole board.

Figure 2-4 Reset button

 \bigcirc

Power Port

The device universal power interface supports AC~220V and DC-48V, which is connected by standard three-core power line.

For the user's safety, when using ~220V AC power supply, the power socket must have good protection ground connection.

2.5 Cable Introduction

2.5.1 DB9-RJ45 Serial Port Cable (ZJN.BH4.851.105A)

Introduction

Device is delivered with Console serial port cable, which can be connected to the RJ45 Console interface and allow us to log in to the device. The serial port cable is used to connect the Console interface of the device and the RS-232 serial interface of the maintenance console and transmit configuration data. The maintenance Console implements local debugging and maintenance through the Console interface.

Connectors at two ends of the cable are as below:

- RJ45 connector: connect to the Console/RS232 port of the device;
- DB9-F connector: used to connect the RS-232 serial port of PC machine.

Appearance

Figure 2-5 shows the DB9-RJ45serial port cable.

Pin Assignments

Figure 2-6 shows pin assignments of the RS-232 serial port and RJ45 Ethernet port.

Figure 2-6 Pin assignments

Technical Specifications

Table 2-6 lists technical specifications of DB9-RJ45 serial port cable.

Item	Description
Name	DB9-RJ45 serial port cable
Туре	CAT5 Unshielded Twisted Pair (UTP-5, UTP-5e) and STP (Shielded Twisted Pair)
Connector	DB9 female connector and RJ45 connector
Length	2m

Table 2-6 Technical specifications of DB9-RJ45 serial port cable

2.5.2 Fiber and Connector (LC/PC)

Introduction

Device supports single-mode or multi-mode fiber.

Appearance

LC/PC fiber connector is shown in Figure 2-7.

Figure 2-7 LC/PC fiber connector

When connecting or removing the LC/PC optical connector, align the connector with the optical port, and do not rotate the fiber. Note the following points:

- To insert the fiber, align the head of the fiber jumper with the optical port and insert the optical fiber into the port gently.
- To remove the fiber, press the latch on the connector, and pull the fiber out.

2.5.3 Ethernet Cable

Introduction

- Used to connect the Ethernet electrical interface with other devices.
- Used to connect the Ethernet monitoring interface on front panel with network interface on NM PC machine.

The Ethernet interfaces on the device are self-adaptive to straight-through cable mode and crossover cable mode. Both of them can be used to connect Ethernet electrical interface.

Appearance and Structure

Figure 2-8 shows the Ethernet cable.

Pin Assignments

Ethernet cables are classified into straight-through cables and crossover cables:

- Straight through cable: EIA/TIA 568B standard line orders are used at both RJ45 connectors crimped twisted pairs.
- Crossover cable: EIA/TIA 568A standard line order is used at one RJ45 connector crimped twisted pairs, while EIA/TIA 568B standard line order is used at the other end.

Table 2-7 lists the line orders of EIA/TIA 568A and EIA/TIA 568B standards.

Connector (RJ45)	EIA/TIA568A	EIA/TIA568B	
PIN 1	White/Green	White/Orange	
PIN 2	Green	Orange	
PIN 3	White/Orange White/Green		
PIN 4	Blue	Blue	
PIN 5	White/Blue	White/Blue	
PIN 6	Orange	Green	
PIN 7	White/Brown	White/Brown	
PIN 8	Brown	Brown	

Table 2-7 Line orders of EIA/TIA 568A and EIA/TIA 568B standards

Both RJ45 connectors of the straight through cable follow EIA/TIA568B standard line order, as shown in Figure 2-9.

Figure 2-9 Line order of the straight-through cable

RJ45 connectors on both ends of crossover cable need to use different standard line orders, usually one RJ45 connector follows EIA/TIA568A standard; the other RJ45 connector follows EIA/TIA568B standard.

The line order of the 100 Mbit/s crossover cable is different from that of the 1000 Mbit/s crossover cable. Diagrams of cable connection are shown in Figure 2-10 and Figure 2-11.

Figure 2-10 Line order of the 100 Mbit/s crossover cable

Figure 2-11 Line order of the 1000 Mbit/s crossover cable

1000Mbit/s crossover cable uses all 8 pins. The crossover is PIN1 to PIN3, PIN2 to PIN6, PIN4 to PIN7, and PIN5 to PIN8.

Technical Specifications

Table 2-8 lists technical specifications of the Ethernet cable.

Item	Description
Connector type	RJ45 connector (crystal head)
Cable type	Category 5 unshielded twisted pair (UTP-5) or shielded twisted pair (STP)
Color	Dark grey
Characteristic impedance	100.0Ω
Inner conductor wire diameter	0.510mm

 Table 2-8 Technical specifications of the Ethernet cable

Item	Description
Breakdown voltage	500.0V
Inner conductor DC impedance	93.8Ω/km
Quantity of cores	8
Frequency range	0~100MHz
Frequency attenuation	22dB/100m@100MHz

2.5.4 AC Power Cable

Application

AC power cable transports AC power from power distribution equipment to AC power supply socket, and then transmits power to the entire device.

The selections of AC power cables are different according to local standards, as shown in Table 2-9.

Regional standard	Cable type	
Chinese standard	BH4.855.035-A	
German standard	BH4.855.035-B	
American standard	BH4.855.035-C	
South Africa standard	BH4.855.035-D	
Japanese standard	BH4.855.035-E	
British standard	BH4.855.035-F	
North American standard	BH4.855.035-G	

 Table 2-9 AC power supply cable list

Appearance and Structure

The AC power cable which meets Chinese standard is composed of Chinese standard three-plug connector and pins terminal, as shown in Figure 2-12.

Figure 2-12 Chinese standard AC power cable (BH4.855.035-A)

The AC power cable which meets German standard is composed of German standard French-mode two-plug connector and pins terminal, as shown in Figure 2-13.

Figure 2-13 German standard AC power cable (BH4.855.035-B)

The AC power cable which meets American standard is composed of American standard two-plug connector and pins terminal, as shown in Figure 2-14.

Figure 2-14 American standard AC power cable (BH4.855.035-C)

The AC power cable which meets South Africa standard is composed of South Africa standard three-plug connector and pins terminal, as shown in Figure 2-15.

Figure 2-15 South Africa AC power cable (BH4.855.035-D)

The AC power cable which meets Japanese standard is composed of Japanese standard two-plug connector and pins terminal, as shown in Figure 2-16.

Figure 2-16 Japanese standard AC power cable (BH4.855.035-E)

The AC power cable which meets British standard is composed of British standard three-plug connector and pins terminal, as shown in Figure 2-17.

The AC power cable which meets North American standard is composed of North American standard three-plug connector and pins terminal, as shown in Figure 2-18.

Figure 2-18 North American AC power cable (BH4.855.035-G)

Technical Specifications

Table 2-10 lists technical specifications of AC power cable.

Item	Description
Cable type	Electronic and electrical cable
Color	Black
Diameter	≥0.5mm ²

Fable 2-10	Technical	specifications	of AC	power	cable
-------------------	-----------	----------------	-------	-------	-------

2.5.5 DC Power Cable

Application

DC power cable transports -48V DC power from power distribution equipment to DC power supply socket, and then transmits power to the entire device.

The DC power cable is the same as AC power cable. When the DC power supply is required, users can need to cut off the other end and connect the power cable with power source.

2.5.6 Protection Ground Cable (ZJN.BH4.851.134)

Introduction

Connecting the protection ground cable properly is an important guarantee to lightning protection, shock proof, and anti-interference.

When installing and using the device, ensure that the grounding cable is properly connected; otherwise, personnel injury or equipment damage may be caused.

Appearance

The protection ground cable is composed of wiring terminals and the coaxial cable. The wiring terminal is usually an OT bare-press terminal. The coaxial cable is yellow/green copper burn-resistant cable. Figure 2-19 shows the grounding cable.

Number	Name
1	Wire
2	Strip end (connected to the OT terminal)
3	Insulating sheath
4	OT terminal

Table 2-11 Grounding cable structure list

Technical Specifications

Table 2-12 lists technical specifications of the grounding cable.

Item	Description
Cable type	Electronic and electrical cable
Cable length	0.4 m
Color	Yellow and green
Connector type	ОТ/ОТ
Inner conductor cable standard	Cross-sectional area ≈ 0.75 mm ²
Maximum current	7.5 A

Table 2-12 Technical specifications of the grounding cable

3 Technical Specifications

3.1 Monitoring Interface

Specifications	Instruction
Ethernet monitoring interface	10/100/1000Base-T Ethernet MDI interface
CONSOLE interface	RS232 interface
Protocol	SNMP
Connector	RJ-45

3.2 10/100/1000Base-Tx Interface

Specifications	Instruction
Interface rate	10M/100M/1000M
Interface specifications	Complying with IEEE 802.3, IEEE-802.3u, IEEE 802.1Q, IEEE 802.1p
Working mode	Auto-negotiation or manual 10/100/1000M full-duplex, 10/100 half-duplex
Interface connector	RJ-45

3.3 100/1000Base-SX/LX Interface

Specifications	Instruction
Interface specifications	IEEE 802.3z
Interface rate	100M/1000M
Working mode	Auto-negotiation, 1000M full-duplex, 100M full-duplex
Interface connector	SFP socket (supporting SR/LR/ER/ZR with 850nm, 1310nm, 1550nm)
Optical interface technical parameters	Determined by optical module

3.4 Power Voltage

Specifications	Instruction
Voltage	DC -48V (-36V~-72V)
	AC ~220V (AC 90V~264V)

3.5 Power Consumption

Specifications	Instruction
Power	<13W
consumption	

3.6 Operation Environment

Specifications	Instruction
Operation temperature	-15°C~+55°C
Storage temperature	-40°C~+70°C
Relative humidity	10%~90%RH (indoor, no condensation)

3.7 Chassis Size

Specifications	Instruction
Size	W×D×H (mm): 255×160×44

3.8 Device Weight

Specifications	Instruction
Weight	≤2.0kg

Appendix Terms and Abbreviations

This chapter introduces terms and abbreviations involved in this user's manual.

- Terms
- Abbreviations

Terms

Α

ACL	(Access	ACL is a series of sequential rules composed by
Control List)		permit deny statements. Based on these rules,
		the device determines which data packets can be
		received and which must be denied.

APS (Automatic Automatic protection switched technology can Protection conduct real-time monitoring towards Switched) transmission path and automatic analysis of alarm information, to timely detect the fault and hidden dangers. In the event of a serious fault, it can automatically switch the working channel to the recover spare channel, SO as to the communication in time and complete the rapid response to failure and recovery mechanism.

Auto-Negotiation Two interconnected Ethernet interfaces automatically select interface rate and duplex mode according to negotiation result.

D

DHCP (Dynamic DHCP is a technology which can assign IP address Host Configuration dynamically in the network. It can automatically Protocol) assign IP address for all clients in the network to reduce the workload of the administrator, realizing the centralized management of IP address.

Ε

EFM (Ethernet in EFM that complies with IEEE 802.3ah is a link-level Ethernet OAM technology. It focuses on link between two directly connected devices and provides link connectivity check, link fault monitoring, remote fault notification, and other functions. EFM is mainly applied in Ethernet link of user access network edge.

F

Full-duplex In a communication link, both parties can receive and send data concurrently

н

Half-duplex In a communication link, only one party can send data at a time. One party is receiving information, while the other party is sending information

I

IEEE (Institute	of	\ensuremath{IEEE} is an international electronic technology and
Electrical a	nd	information science and engineer association,
Electronics		which is also one of the world's largest
Engineers)		professional technical organizations (number of members).

L

Label Label is the Identification for cable, chassis and alarm.

Μ

Multi-mode Fiber Multi-mode can be transmitted in one fiber

Ν

NTP (Network NTP is a time synchronization protocol defined by Time Protocol) RFC1305, which is used for the time synchronization between distributed time server and client. The purpose of using NTP is to conduct fast clock synchronization to all devices which have clocks in the network, so that the device can provide different application based on the unified time. At the same time, NTP can guarantee high accuracy (error is about 10ms).

Ρ

Protection Ground Protection ground wire is used to connect device Wire with the protection ground. Usually, it is a yellow-green coaxial wire.

Q

QoS	(Quality	of	\ensuremath{QoS} is a network security mechanism used to
Servio	ce)		solve the network delay and congestion
			problems. It can ensure the timeliness and
			integrity of important service during network
			overload or congestion and the highly efficient
			running of the entire network.

QinQ (Stacked QinQ is extended from 802.1Q, defined by IEEE VLAN or Double 802.1ad recommendation. In carrier backbone VLAN) network (public network), the packets take double VLAN Tag passing through trunk network (public network): public network VLAN Tag and private network VLAN Tag. In public network, the private VLAN Tag is transmitted as data in packets. QinQ supports basic QinQ and flexible QinQ

S

SNMP	(Simple	SNMP is a protocol which is promoted by IETF
Network		(Internet Engineering Task Force) to solve the
Manageme	ent	management in network devices. SNMP can make
Protocol)		a NMS remote manage all SNMP supported
		network devices, including monitoring network
		status, modifying the network device
		configuration, and receiving network event alarm
		etc. It is the most popular network management
		protocol used in TCP/IP network.

SNTP(SimpleSNTP is mainly used in the device time ofNetworkTimesynchronization network.Protocol)

v

VLAN	(Virtual	VLAN is a protocol proposed to solve broadcast
Local	Area	and security issues for Ethernet. It divides devices
Network)		in a LAN into different segment logically rather
		than physically, thus implementing virtual work
		groups which are based on Layer 2 isolation and
		do not affect each other.

Abbreviations

Α	
AC	Alternating Current
ACL	Access Control List
ARP	Address Resolution Protocol
APS	Automatic Protection Switching
В	
BITS	Building Integrated Timing Supply System
BPDU	Bridge Protocol Data Unit
с	
CAR	Committed Access Rate
CBS	Committed Burst Size
CIR	Committed Information Rate
CoS	Class of Service

D	
DC	Direct Current
DHCP	Dynamic Host Configuration Protocol
DS	Differentiated Services
E	
EFM	Ethernet in the First Mile
ERPS	Ethernet Ring Protection Switching
ESD	Electro Static Discharge
EVC	Ethernet Virtual Connection
F	
FE	Fast Ethernet
G	
GE	Gigabit Ethernet
I.	
IEC	International Electro technical Commission
IEEE	Institute of Electrical and Electronics Engineers
IETF	Internet Engineering Task Force

_

ITU-T	International Telecommunications Union Telecommunication Standardization Sector
L	
LACP	Link Aggregation Control Protocol
LACPDU	Link Aggregation Control Protocol Data Unit
LAN	Local Area Network
LLDP	Link Layer Discovery Protocol
LLDPDU	Link Layer Discovery Protocol Data Unit
М	
MAC	Medium Access Control
MDI	Medium Dependent Interface
MDI-X	Medium Dependent Interface cross-over
Ν	
NTP	Network Time Protocol
0	
OAM	Operation, Administration and Management
Q	
QoS	Quality of Service

R	
RH	Relative Humidity
RADIUS	Remote Authentication Dial In User Service
S	
SFP	Small Form-factor Pluggable
SLA	Service Level Agreement
SNMP	Simple Network Management Protocol
т	
ТСР	Transmission Control Protocol

TFTP	Trivial File Transfer Protocol

- TLV Type Length Value
- ToS Type of Service
- TPID Tag Protocol Identifier

v

VLAN

Virtual Local Area Network